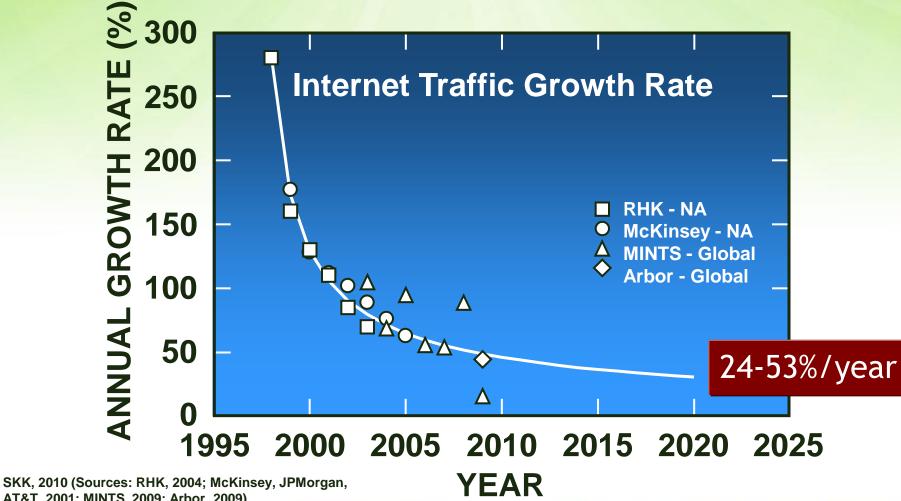


Core Switching and Routing Working Group Overview, Research Targets and Challenges

Thierry E. Klein Chair, Core Switching and Routing Working Group GreenTouch Open Forum November 17th, 2011


Overview

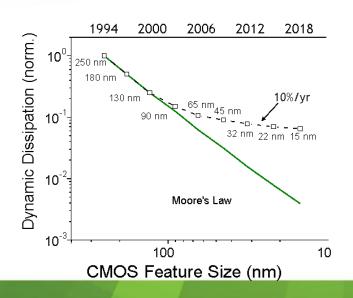
Core Switching and Routing Working Group

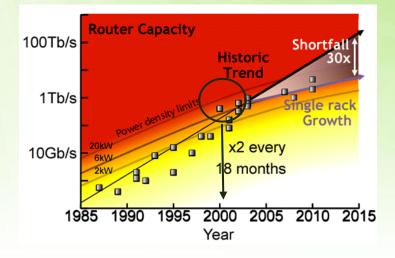
- Technology Limitations
- Energy Efficiency Challenges
- Focus Statement
- Membership
- Energy Efficiency Improvement Opportunity
- Research Targets
- Key Research Projects and Activities

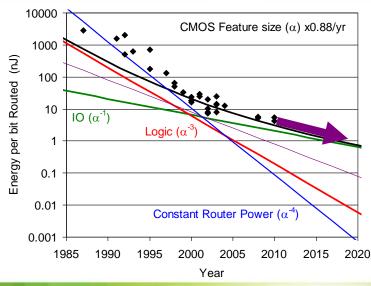
Past and Anticipated Internet Growth

Courtesy of Steve Korotky

GreenTouch

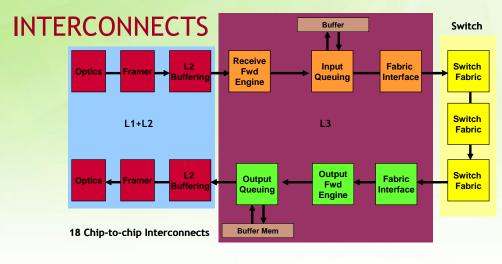

AT&T, 2001; MINTS, 2009; Arbor, 2009).

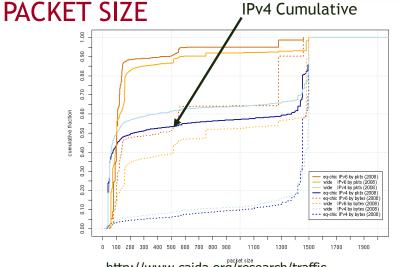

Traffic Growth and Technology Slow-Down

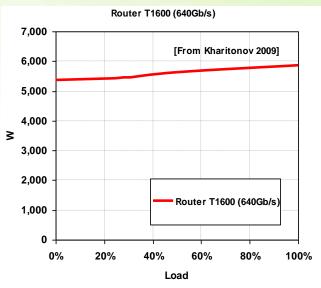

Traffic doubling every 2 years

- 40% per year
- 30x in 10 years
- 1000x in 20 years
- Slow-down in technology
 - Network energy efficiency increasing 10-15% per year

Leading to an energy gap






Some Specific Router Limitations

http://www.caida.org/research/trafficanalysis/pkt_size_distribution/graphs.xml

ENERGY DOES NOT FOLLOW LOAD

D.Kharitonov, "Time-Domain Approach to Energy Efficiency: High-Performance Network Element Design" 2009 IEEE GLOBECOM Workshops

Focus Statement for Core Switching and Routing

Focused on components, technologies, systems, algorithms and protocols at the data link layer (L2), the network layer (L3) and the transport layer (L4) as well as interactions with lower and higher layers and research efficiencies that can be obtained from cross-layer optimizations and joint designs

- Network equipment hardware (routers and switches)
 - Architecture and components
 - Functions, features and dimensioning
 - Low energy technologies (including electronics, photonics, etc)
 - Power measurements

Network topologies and architectures

- Tradeoff between optical and electronic data transport
- Optimal joint IP-optical network design
- Packet versus circuit-switched architectures
- Energy efficient and simplified routing
- Integration of application and transport layers
 - Cross-layer optimization for efficient content distribution

Traffic engineering

- Bandwidth allocation & traffic grooming
- Elimination of over-provisioning
- Efficient protection and restoration
- Multicasting, elimination of junk and redundant traffic
- Network management, operation and control
 - Quality of service support
 - Network-wide reconfiguration and control of network elements (offline or online). Holistic, end to end approach
 - Protocols and algorithms for managing and controlling network elements
 - Control and data plane
 - Energy and traffic monitoring

Working Group Membership

- Athens Information Technology (AIT)
- Bell Labs (Chair: Thierry Klein)
- Broadcom
- Chunghwa Telecom
- Columbia University
- Dublin City University
- Electronics and Telecommunication Research Institute (ETRI)
- Energy Sciences Network / Lawrence Berkeley Labs
- Politecnico di Milano
- Freescale Semiconductor
- Fujitsu
- Huawei Technologies
- IBBT
- IIIT Delhi
- INRIA
- KAIST
- Karlsruhe Institute of Technology

- Nippon Telegraph and Telephone Corporation
- Politecnico di Torino
- Samsung Advanced Institute of Technology (SAIT)
- Seoul National University
- University of Manchester
- University of Melbourne
- University College London
- University of Cambridge
- University of Leeds (Co-Chair: Jaafar Elmirghani)
- University of New South Wales
- University of Toronto

28 members organizations with 67 individual members

Energy Efficiency Improvement Opportunity

- Provide assessment of potential opportunities for power efficiency improvements in packet networks
 - Include the electronically switched portion of a service provider network, including IP, Ethernet and OTN
 - Excluding fixed and wireless access networks
 - Excluding optical transport
 - Excluding opportunities for traffic reduction, e.g. via caching
- Goal is to assess the opportunity for energy efficiency improvement with a realistic path towards realization within the GreenTouch timeframe
- Determine "independent" dimensions so that power efficiency numbers can be multiplied to arrive at overall efficiency opportunity

Background and Assumptions

Timeframe:

- Consistent with GreenTouch timeframe
- Algorithms, architectures and technologies that can be demonstrated by 2015
- With evolutionary improvements through 2020
- Applied to 2020 traffic
- Comparison with 2010 traffic and 2010 technologies

Assumptions:

- Consider the traditional IP packet data network framework
- Alternative paths and technologies are possible, but more speculative and are not expected to fit in the timeframe:
 - Optical burst switching
 - Content centric networking
 - Adiabatic switching, quantum dot cellular automata,

Overall Efficiency Opportunity

15x

1.5x

2x

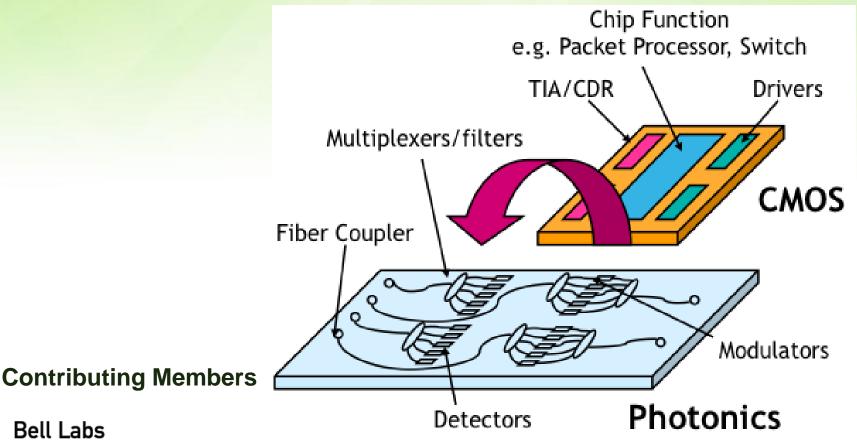
3x

2x

- Defined 5 independent categories:
 Chip level components and devices:
 Network element design:
 - Network architecture:
 - Dynamic resource management:
 - Power utilization efficiency:
- Overall power efficiency opportunity: 270x
- Caveats:
 - Numbers are best current estimates of efficiency improvement opportunity
 - Large degree of uncertainty especially around network element architecture and network architecture
 - Optimistic estimates since not clear if and how all the targets can be achieved
 - Pessimistic estimates since constrained to current IP packet network architectures and further-out technologies not considered

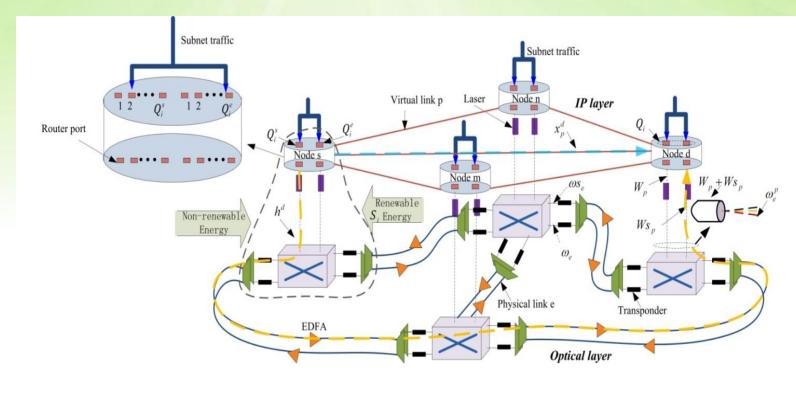
Research Targets by Functional Topic (1)

Research Target	Target
Chip Level Components and Devices	
Low power electronics and photonics	3x - 10x
Opto-electronic integrated circuits	3x - 10x
Network Element Design	
Scalable and energy efficient router architectures for peta-bit routers	1.5x
Simplified and energy efficient protocols to eliminate unnecessary and redundant packet processing. Energy efficient software	
Integrated transceiver and wavelength circuit switching fabric operating in a core network to eliminate routing infrastructure and reduce layer-2 switch energy/bit for targeted services	10x
Network Architecture	
Network architectures, topologies and joint IP-optical design	3x - 10x
Energy efficient content routing (content router design, protocols and content placement and replacement algorithms)	10x
Energy optimized combined source and channel coding designed for end to end service dependent efficiency	


Research Targets by Functional Topic (2)

Research Target	Target
Dynamic Resource Management	
Rate adaptation and sleep cycles (processors, buffers, switch fabrics, linecards, router)	2x - 4x
Energy efficient routing	2x
Energy aware scheduling algorithms designed for delay tolerant services that enable end to end buffereless transmission respecting service QoS requirements	
Power aware protection and restoration	2x
Power Utilization Efficiency	
Passive cooling and advanced thermal management	1.5x

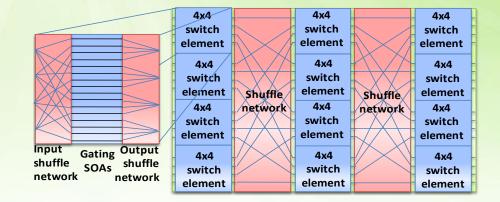
- Requires equipment and network models with energy equations to determine overall energy efficiency improvement opportunity
- Gain understanding into which research targets are additive and multiplicative
- Gain understanding into most impactful research areas

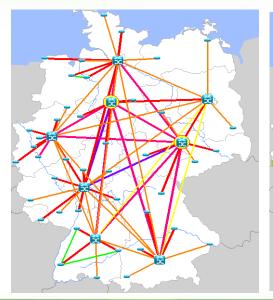


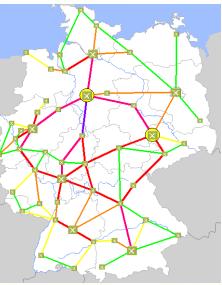
SCORPION Silicon Photonic Interconnects and Single-Chip Linecard

OPERA: OPtimal End to end Resource Allocation

Contributing Members

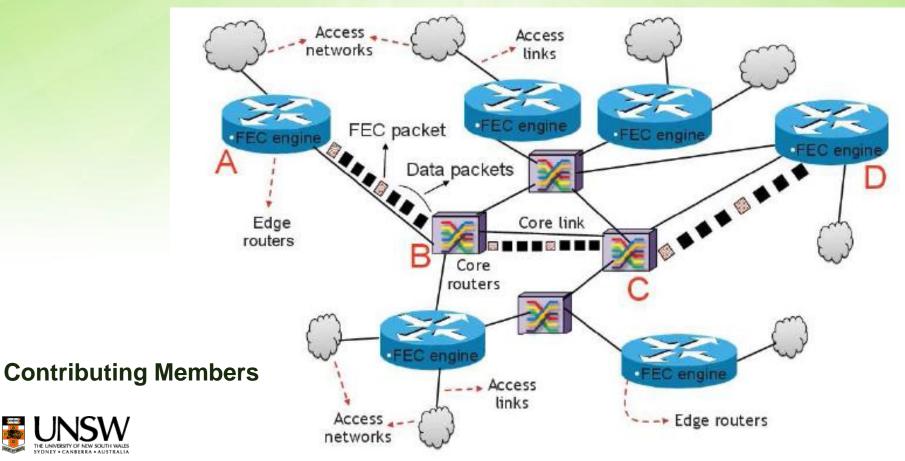



Perceptum ex Optimus


STAR: SwiTching And tRansmission

IP layer

Contributing Members



UNIVERSITY OF LEEDS

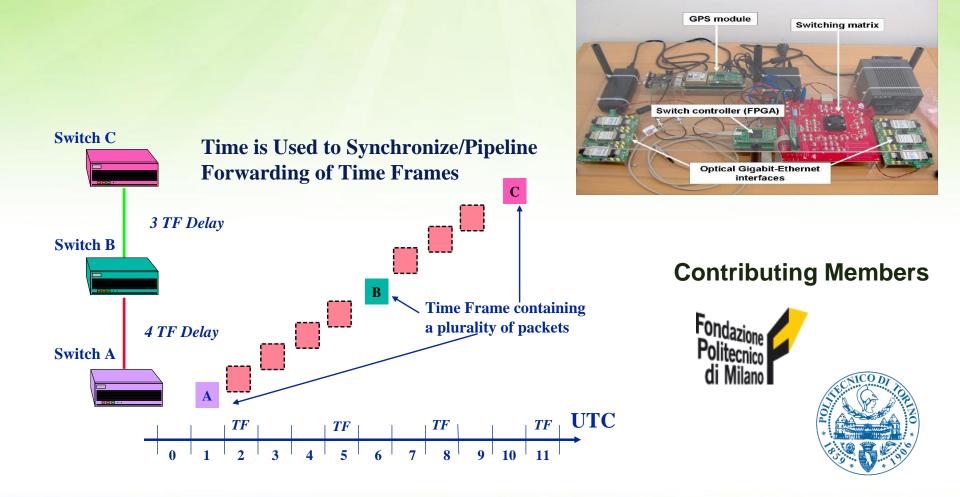
Bell Labs

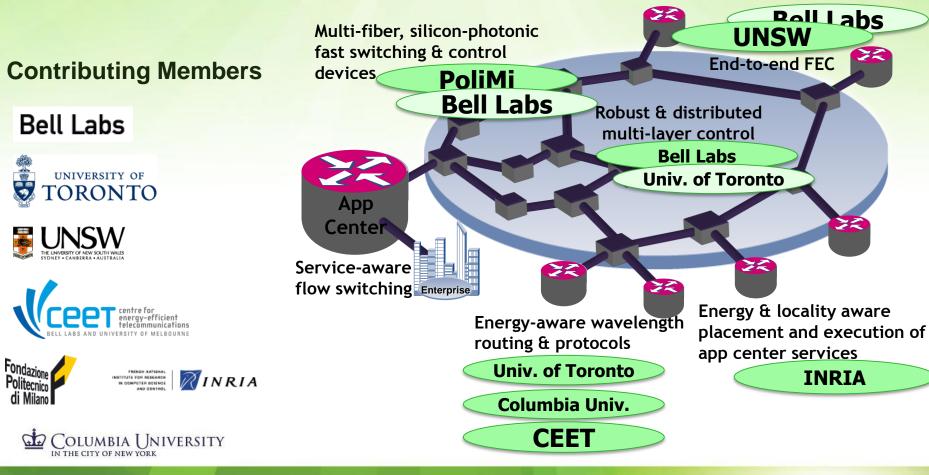
ZeBRA: Zero Buffer Router Architecture

centre for energy-efficient

IVERSITY OF NEW SOUTH WALES EY + CANBERRA + AUSTRALIA

REPTILE: Router Power Measurements


Contributing Members



TIGER: Time for a Greener Internet

SEASON Service Energy Aware Sustainable Optical Networks

Research Targets and Mapping to Projects (1)

Research Target	Projects	
Chip Level Components and Devices		
Low power electronics and photonics	SCORPION, STAR	
Opto-electronic integrated circuits		
Network Element Design		
Scalable and energy efficient router architectures for peta-bit routers	SCORPION	
Simplified and energy efficient protocols to eliminate unnecessary and redundant packet processing. Energy efficient software		
Integrated transceiver and wavelength circuit switching fabric operating in a core network to eliminate routing infrastructure and reduce layer-2 switch energy/bit for targeted services	SEASON	
Network Architecture		
Network architectures, topologies and joint IP-optical design	OPERA, TIGER, ZeBRA, STAR, SEASON	
Energy efficient content routing (content router design, protocols and content placement and replacement algorithms)	CROCODILE (to be approved)	
Energy optimized combined source and channel coding designed for end to end service dependent efficiency	SEASON	

Research Targets and Mapping to Projects (2)

Research Target	Projects	
Dynamic Resource Management		
Rate adaptation and sleep cycles (processors, buffers, switch fabrics, linecards, router)	OPERA, ZeBRA, REPTILE	
Energy efficient routing	STAR, OPERA	
Energy aware scheduling algorithms designed for delay tolerant services that enable end to end buffereless transmission respecting service QoS requirements	SEASON	
Power aware protection and restoration	OPERA	
Power Utilization Efficiency		
Passive cooling and advanced thermal management		

